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Abstract--An elastic-plastic finite element method, based on the Prandtl-Reuss equations of plastic flow and 
involving equivalent stresses and strains, is used to study boudinage structure. Our choice of data for the simulations 
was guided by published stress-strain curves for marble (matrix) and quartzite (boudin), the essential parameters 
being yield stress and rock 'hardness' (defined by the slope of the stress-strain curve). All models assume an initial 
fracture and slight separation and therefore only simulate post-fracture behaviour. The simulations suggest that 
boudin shape is determined by boudin hardness; maximum stresses are concentrated in the corners which therefore 
shows the most shape modification. Matrix hardness determines the amount of boudin separation. Direct comparison 
with natural examples is restricted to boudins suffering no significant pre-fracture plastic deformation (i.e. 
rectangular- and barrel-shaped boudins), although other types are likely to have the characteristics of barrel and 
pinch-and-swell styles. The simulations do not consider the nature and timing of boudin-defining fractures but these 
are important in determining the style of boudinage which ultimately develops. Some mechanical problems 
associated with the infilling of inter-boudin gaps by ductile rock matrix are discussed and two models proposed. The 
first, based on yielding fracture mechanics, is used to explain boudins with wedge-shaped (or otherwise non- 
matching) ends. The second, a hydraulic model, is proposed to account for gaps between rectangular boudins that 
are filled by ductile rock matrix. 

INTRODUCTION 

THERE appear to have been only five contributions in the 
literature on the finite element simulation of boudinage 
structure. Four of these report the same work (Stephans- 
son & Berner 1971, Stephansson 1973, Huddleston & 
Stephansson 1973, Stromgard 1973), which assumed 
elastic plane stress conditions and employed constant 
strain quadrilateral elements (although nodal displace- 
ments, stresses and strains were determined by breaking 
down the quadrilaterals into three-node triangular ele- 
ments). Such triangular elements are computationally 
inefficient and may lead to relatively large numerical 
errors (Desai & Abel 1972). In addition, plane stress 
assumes that the structure being represented is a thin shell 
rather than a solid body of considerable thickness. A more 
realistic approach is to assume plane strain conditions. In 
spite of these drawbacks this early study did manage to 
explain some of the features of boudinage structure. 

Recently, Selkman (1978) reported a more rigorous 
finite element study of the stress distribution and displace- 
ments during progressive boudinage, again assuming 
elastic behaviour. Although he used an iterative approach 
with a constant amount of shortening per deformation 
increment the shape modification and separation of the 
boudins were identical to those obtained by the earlier 
study and also by the present authors in an elastic plane 
strain analysis using isoparametric quadrilateral elements 
(in which the the strain need not be homogenous across 
the element). Because the plane strain and iterative 
approaches failed to produce significant improvements 

on the earlier simpler model further progress is likely to 
require the modelling of more realistic material be- 
haviour. So far only linear elastic behaviour has been 
considered. 

In this contribution we report the finite element 
simulation of boudinage structure in which plastic ma- 
terial behaviour is allowed. This requires the incorpor- 
ation of constitutive equations of material plasticity into 
a standard finite element program. A simplified theory of 
plasticity is presented which is then adapted for use in 
finite element analysis. A series of simulations is then 
performed to study the effects of material properties and 
amount of deformation on the characteristic features of 
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Fig. 1. Idealised stress-strain curve approximated by straight-line 
segments for use in the PFEM models. 
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boudinage, such as boudin shape and separation. The 
results of these simulations are then compared with 
natural examples of boudinage. 

S IMPLIFIED PLASTICITY THEORY 

Figure 1 shows an idealised stress-strain curve. At any 
point on the curve the stress-strain relationship can be 
written 

da 
tan h = --- (1) 

de 

where h, the work-hardening coefficient, determines how 
the deformation can continue. Obviously the segment O P  
represents linear material behaviour, but for stresses 
above that at P, other types of material response are 
possible depending on whether the relative resistance to 
deformation increases or decreases. Equation (1) there- 
fore reflects the internal response of the material to the 
deformation and all its possible forms can be represented 
phenomenologically by plasticity theory. 

A material behaves in an elastic-plastic manner if, at 
stresses below a critical level, it responds as an elastic solid 
while at stresses at or above the critical level (yield stress) 
it becomes permanently strained. Mathematical theories 
of plastic deformation (e.g. Hill 1950, Mendelson 1968) 
express the stress history of a material as a line joining 
points of successive stress states, one of which is the yield 
stress. A variety of stress paths are usually possible and 
consequently a yield surface containing all the possible 
yield points can be envisaged. The shape of this surface is a 
function of the three invariants of the stress tensor and is 
known as the yield criterion. Von Mises has proposed the 
most generally accepted yield criterion which involves 
only the second invariant of the deviatoric stress tensor 
(see Ramsay 1967, p. 316). 

In any constitutive equation for plastic behaviour the 
principal axes of the strain increments are parallel to those 
of the stress, and the incremental strains are proportional 
to the ratios of the stress magnitudes. Thus, the basic 
equations of plastic flow (Prandtl-Reuss equations) are 
(Ramsay 1967, p. 321): 

6eli = 3 - 2 ( ~ J  + akk) 

+ 1 [ t a ,  - v(ta~ + ~a~k)] 

(1 + v) 
6ei j  = 26~crij + 2 E - a i j  (2) 

where {i,j, k} represent {x, y, z} permutated in the usual 
way, E is Young's modulus and v is Poisson's ratio ; and ~, 
is a proportionality factor which relates strain increments 
to deviatoric stresses and which is independent of the yield 
criterion. 

PLASTIC FINITE ELEMENT THEORY 

The finite element method (FEM) is a numerical 
procedure for modelling forces, displacements (or velo- 
cities), stresses and strains (or strain-rates) in bodies of 
arbitrary geometry and for materials obeying a variety of 
constitutive equations. The continuous body is repre- 
sented by a finite number of discrete elements connected 
at nodal points; material properties may vary from 
element to element. In most finite element simulations a 
relationship is required between the co-existing forces 
and displacements and leads to a definition of the stiffness 
of the body (Desai & Abel 1972), 

[ S ] = { F  IIU} t (3) 

where IS] is the combined stiffness of all the elements in 
the body, {F} the externally applied forces (or displace- 
ments) and { U} the unknown displacements. This is the 
usual assumption of linearity and, if both [S] and {F} are 
known, leads to a simple evaluation of { U}. However, if 
either [S] or {F} or both are dependent on {U} the 
relationship is nonlinear. So far most applications of the 
FEM in structural geology have considered either linear 
elastic or Newtonian viscous behaviour (e.g. Stephansson 
& Berner 1971, Shimamoto & Hara 1976) or nonlinear 
steady-state behaviour based on a power law creep 
expression (e.g. Parrish e t  al. 1976). To model nonlinear 
stress-strain relationships by means of plasticity theory 
requires a different technique based on the general theory 
outlined above. 

In the elastic-plastic finite element method (PFEM) the 
uniaxial stress-strain curve is approximated by straight 
line segments, the first of which represents the elastic 
portion of the curve with gradient equal to Young's 
modulus. The plastic component is made up of much 
shorter linear segments with gradients equal to the strain- 
hardening coefficients. The uniaxial case is generalise, d by 
making use of equivalent stress (a~q) and equivalent strain 
(e,e~). The equivalent stress is given by (Mendelson 1968). 

1 
~.~ = ~ [(o'~ - o . ~  + I ¢ .  - ¢~z) ~ + ~,,~: - ,~xx) ~ 

+ 6(a~r + a 2y, + a~x)] (4a) 

For the uniaxial case aeq is identical to a~, the maximum 
principal stress at a point (Mendelson 1968). 

For e.eq it is convenient, after yield has occurred, to 
partition the components of strain into elastic and plastic 
parts. The elastic components are related to the stresses 
through Hooke's law. The plastic components contribute 
nothing towards the stresses and form residual strains; 
they are zero before yield. The equivalent strain is 
therefore given by : 

~eq = [£eq)el -[- (eeq)p! (4b) 

where the elastic component is, 

O'eq 
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1 
- (1 + v)x/2 {[(ex~)~'- (eYY)el]2 at- [ (gyy)e/-  (gz,)el] 2 

3 
+ + ( S a )  

and the plastic component is given by the sum of the 
increments of the equivalent plastic strains (Mendelson 
1968), 

2 

= 3-4-5 
+ 2 

+ - 2 

3 2 
+ 5 [(6e, y),, + (6e,,)~, + (&,,)~,]},/2. (5b) 

Here, making the usual assumption of no volume change, 
]replaces (1 + v)and ( re~)p  I + (reyy)p I + (re,~)o z = O. T h e  
constants in equations (4a), (5a) and (Sb) are chosen so 
that tr,q and e,~ for the uniaxial case are simply a~x and e~x. 
When a~q becomes greater than the uniaxial yield stress 
yielding occurs according to the von Mises criterion. 

The expression for (e,q)pt is similar to that for tr,a and 
complies with the plastic stress-strain relationships and 
the principle of the equivalence of plastic work, which 
states that the deformation is a function of the plastic 
work only and must be positive or zero (Mendelson 
1968). The equivalent strain must therefore be expressed 
as the sum of its increments (i.e. (te~)o ~ etc.). We are now 
in a position to define the elastic-plastic stress-strain 
relations. 

The elastic part of the strain components are related to 
the stresses by Hooke's law. For the plastic stress-strain 
relations the PFEM uses the Prandtl-Reuss equations 
(2). However, because we have already accounted for the 
elastic part of the total deformation we are only concerned 
with the plastic terms in equations (2) which can be 
written, 

[ 1 ] 
(texx)pl = 6 0  ax,, - ~ (ax~ + tr,r + tr,,) etc. 

in which 31 (a~x + trry + trzz ) is the mean stress. Thus, 

(tex,,)pl = 6~ka'xx etc. (6) 

where tr~,~ is the deviatoric stress. We can now write the 
total elastic-plastic stress-strain relationships by making 
the appropriate substitutions into equations (2). Hence, 

1 
6Gx = 6~tr '~ + ~ [trx~ - v(trry + trz,)] etc. 

Using the definitions of tre~ and (re~)ol given by equations 
(4a) and (Sb) we can also define, 

3 (re,~)~z 
6 0  = 2 a ~  

The constitutive equation used in the PFEM can now be 
written 

3 (reeq)pl , 1 
6e,,x = 2 tr~q tr:,,, + ~ [tr,= - v(trn, + ~, ) ]  etc. 

3 (6ee,)pz ax,  2(1 + v) 
+ - -  axy etc. (7) 6e~y = 2 aeq E 

As the plasticity analysis is based on the incremental 
Prandtl-Reuss equations it is normally necessary to 
apply the total load over the structure in load increments. 
When the first load increment is applied, the strains, and 
therefore the stresses, are calculated for each element 
at particular points. Where yielding has occurred the 
stresses are given an equivalent stress value greater than the 
yield stress. To begin with, the plastic strains are taken as 
zero and so the equivalent stress and the equivalent strain 
will lie on the continuation of the linear (elastic) part of the 
stress-strain curve (Fig. 1) and not on the curve itself. A 
negative gradient is therefore taken from the calculated 
point onto the true curve so as to estimate the value of the 
equivalent plastic strain increment. Then, given the 
equivalent stress and the equivalent strain, the PFEM 
checks to see whether the point fits onto the actual curve. 
If it does, the analysis proceeds to the next load increment 
and the process is repeated; if it does not, the program 
uses the equivalent stress and strain to make a new 
estimate of the equivalent plastic strain from the curve, 
calculates a new value for the plastic strain increments 
and repeats the fitting. The process continues until the 
calculated point lies on the actual curve. The final values 
are then used to calculate the displacements and forces 
within the body. 

To model plastic deformation using the PFEM, we 
require data on the yield stresses, the (strain-hardening) 
gradients of the linear segments of the plastic parts of the 
stress-strain curve, the value of the stresses at the 
intersection of adjacent segments and the elastic con- 
stants of the pre-plastic deformation. The acquisition of 
this data is discussed in the next section. 

MODEL CONFIGURATION AND 
ASSUMPTIONS 

The general forms of stress-strain curves derived from 
experimental deformations of rocks are shown in Fig. 2(a). 
In the PFEM simulations our choice of values for yield 
stress and strain-hardening gradient has been guided by 
the experimental curves for Yule marble extended parallel 
to foliation (Heard & Raleigh 1972) and 'dry' quartzite 
(Heard & Carter 1968, but taken from Parrish et  al. 1976). 
The experimental conditions were 700°C and a strain rate 
of 10-7 s-1. Geologically this is very fast, but the high 
temperature is considered to produce deformation by 
mechanisms similar to those operating in nature at slower 
strain-rates and lower temperatures (Paterson 1976). 

The yield stress is defined by the point on the curve (Fig. 
2a) below which the stress-strain relationship is linear. 
Above the yield stress the curve is divided into linear 
segments ht, h2, etc. To describe the curve above yield 
stress the PFEM requires the value of ht, h2, etc. and the 
magnitude of the stress (at, a2, etc.) at the intersection of 
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Fig. 2. (a) Generalised stress-strain curves for boudin and matrix used in the FEM models showing how the data were obtained. 
(b) Stress-strain curves for the boudins; modified from experimental deformation data given by Heard & Carter (1968). (c) 

Stress-strain curves for the matrix, modified from experimental deformation data given by Heard & Raleigh (1972). 
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Fig. 3. Model configuration ; because of symmetry only one quarter of 
the whole system is required provided that the elemental nodes along y y  

and x x  are constrained to move parallel to y and x respectively. Nodal 
positions are shown for one element, while the boudin elements are 

shaded. 

the segments. The experimentally motivated curves used 
to represent various boudin-matrix relationships are 
shown in Figs. 2(b) and (c). In three simulations (BI,, B3 
and B5) only elastic deformation of the boudins is 
permitted. In the other models (B2, B4 and B6) plastic 
boudin deformation is allowed, the deformation history 
being controlled by the yield stress (the same for each 
model) and the value of the work-hardening coefficient for 
each deformation increment. In one model (B2) the 
boudin becomes perfectly plastic at a stress only slightly 
above the yield stress and we refer to this as a soft boudin. 
In the other two (B4 and B6) the work-hardening 
coefficient reduces very much less rapidly and is the same 
for both boudins until the final stages of deformation 
when B6 becomes softer; the boudins do not approach 
perfect plasticity and we refer to these as hard boudins, 
although B4 is ultimately harder than B6. The matrix, 
which can deform plastically in all models, is perfectly 
plastic (i.e. soft) in models B 1 and B2 and (relatively) hard 
in models B3, B4, B5 and B6, although for the final stages 
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Fig. 4. Variation in boudin shape and separation during progressive (increments 1 to 5} deformation ; models  B2, B4 and 
B6 involve boudins which are allowed to yield. 



Elastic-plastic finite element simulations of boudinage structure 121 

(a) B1 
1 

B3 B5 

(b) B2 B4 B6 
1 

Fig. 5. Variation in equivalent stress in the models as shown by the 
progressive (increments 1 to 5) development of plastic behaviour 
(shaded) during deformation. (a) All-elastic boudins. (b) Elastic-plastic 

boudins. 

of deformation the latter two are softer. In each case the 
matrix yield stress is less than that for the boudin. 

The design of the models is shown in Fig. 3 ; eight node 
isoparametric elements are used throughout. Because of 
problems in the formation of new elements during the 
analysis it was not possible to model the first stages of 
boudinage, that is the initiation and development of a 
fracture and the first increments of boudin separation. 
The models described here take as their starting con- 
figuration two boudins which have already separated 
slightly. Such a geometry has two orthogonal planes of 
symmetry and we therefore need to model only one 
quarter of the overall system (Fig. 3). However, this means 
that the boudin has only a small region of matrix on one 
(right) side and an infinite extent on the other (left) side. 
This asymmetry is somewhat unrealistic and leads to 
slightly asymmetric stress and strain distributions. 

The boudinage layer is assumed to be continuous 
normal to the analysis plane and hence the type of analysis 
is engineering plane strain. The symmetry axes of each 
model are constrained so that the nodes can only move 
parallel to their particular axis. In all models the loads 
applied at the nodal points along the upper edge are such 
as to simulate a uniform loading remote from the boudin. 
This has the same effect on the resulting stresses as 
removing the component due to the hydrostatic part of 
the total stress system. The stresses left in the model are 
therefore due to the stresses which exceed the hydrostatic 
component. 

RESULTS 

The results of the PFEM simulations of boudinage are 
shown in Figs. 4-6. The features of interest are boudin 
separation, boudin shape and the distribution of stresses 
within and adjacent to boudins. 

Separation 

For elastic boudins (models B1, B3, B5) separation 
increases with decreasing matrix hardness and also with 
the amount of deformation (Fig. 4). Boudin separation is 
therefore determined by matrix hardness and amount of 
deformation. This also applies to models involving plastic 
boudins; compare B2 (softest) with B4 (hardest). It is 
interesting to note the separation shown in models B4 and 
B6. For most of the deformations the stress-strain curves 
are identical (Fig. 2c) but for the later stages the matrix in 
model B6 is softer, which allows the boudin to separate 
more than in B4 (Fig. 4). Close examination of the 
comparative matrix behaviour for elastic boudins (models 
B3 and B5) shows a slightly larger separation for the 
(eventually) softer matrix (B5). 

Shape 

Because elastic deformation is totally recoverable the 
three elastic boudins cannot show any permanent shape 
change. It should be noted that the gross change in shape 
shown by B1 in Fig. 4 is almost wholly a function of the 
PFEM. The analytical technique is unable to accom- 
modate the large changes in material behaviour which 
occur across the boudin-matrix boundary and hence the 
boudin deforms more than permitted by its elastic moduli 
in order to maintain element compatibility. In the models 
involving plastic boudins the initial changes in shape 
occur at the boudin corners, with the greatest modifi- 
cation being shown by the softest boudin. This is shown 
especially clearly by comparing models B4 and B6 which 
have the same boudin stress-strain curves until the later 
stages of the deformation (Fig. 2b). The shapes are 
identical until the difference in behaviour occurs when the 
boudin which is now softer (B6) begins to show more 
shape modification (Fig. 4). In general, as the deformation 
continues (increments 1 to 5) the corners continue 
to deform and the deformation spreads through the 
boudin. This is best shown by diagrams of the spread of 
plastic behaviour through the boudins (Fig. 5). Because 
plastic deformation spreads gradually through the boudin 
and because the rate of spread is ultimately determined by 
the hardness of the boudin, hard boudins will show 
mainly end and corner shape modification but little 
change in length. Only the softer boudins will extend 
appreciably (Fig. 4). Boudin shape is therefore determined 
by boudin hardness and the amount of deformation. 

Stress variation 

A qualitative appreciation of the stress distribution 
during boudinage can be gained by tracing the pro- 
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Fig. 6. Variation in equivalent stress along the boudin axis for model B6, 
third increment. 

especially the corners, which therefore show the most 
modification in shape during deformation. 

COMPARISON WITH NATURAL EXAMPLES 

Boudinage has usually been explained in terms of 
competence contrast between layer and matrix (e.g. 
Ramberg 1955, Ramsay 1967, Stromgard 1973, Smith 
1975). In what follows we have not used this ambiguous 
term, instead we use the terms soft and hard to describe in 
a general way how closely the plastic deformations 
approach perfect plasticity. 

Boudin style 

gressive development of plastic deformation in the models 
(Fig. 5). Within those boudins that are allowed to yield the 
stresses are greatest at the ends, especially the corners, as 
yield occurs there first. As the deformation progresses 
plastic behaviour gradually develops throughout the 
boudins, although there is always a central region of 
relatively lower stress. Models B4 and B6 also show small 
areas near the corners in which the stress is relatively low. 
These low stress areas may be anomalies introduced by 
the PFEM method, but as elastic simulations show 
similar areas, this seems unlikely. We are unable to offer a 
physical explanation for these areas. 

All the models show the development of matrix press- 
ure shadow regions adjacent to the ends of the boudins 
(Fig. 5). Pressure shadow regions develop preferentially in 
hard matrix systems although boudin hardness is a 
contributing factor. 

Figure 6 illustrates the variation in equivalent stress for 
model B6, load increment 3. The equivalent stress de- 
creases from either end of the boudin implying a trend 
towards a less compressive stress environment. A con- 
sequence of this is that, for any given fluid pressure, the 
effective stress will be least across the centre of the boudin 
and therefore tensile fracture is most likely to occur there. 
Similar fracture behaviour is shown by fibres in fibre- 
reinforced composites (Kelly 1973) and will be discussed 
in more detail in the context of boudinage in a subsequent 
paper. 

Summary of results 

The results of the PFEM analyses may be summarised 
as follows. 
(1) Boudin separation is a function of matrix hardness 

and amount of deformation. 
(2) Boudin shape is determined by boudin hardness and 

amount of deformation. 
(3) Boudin length can be nearly constant after fracture 

and during separation but will increase if the boudin is 
soft. 

(4) The largest stresses occur at the ends of boudins, 

Some common boudinage styles have obviously in- 
volved a certain amount of pre-fracture plastic defor- 
mation in the form of necking. This is most clearly 
demonstrated by the pinch-and-swell style of boudinage. 
Because of the inability of the PFEM to incorporate 
fracture it has not been possible to consider the effects of 
pre-fracture plastic deformation and direct comparisons 
between the simulations and natural boudinage are 
therefore restricted to situations in which fracture has 
occurred without prior necking. This appears to be true 
for the rectangular and barrel styles (Figs. 7a and b). Once 
fracture has occurred hard boudins will remain approx- 
imately rectangular. As hardness decreases the amount 
of shape modification increases, especially at the corners, 
resulting in barrel-shaped boudins. With decreasing hard- 
ness or increasing deformation the boudin corners may be 
stretched out into horn-like protuberances (Fig. 7c). 

Although not directly applicable, the results of the 
PFEM analyses can still be used in the interpretation of 
boodinage which has involved pre-fracture necking. For 
instance, we can recognise horn-like boudin ends in layers 
that have suffered considerable pre-fracture necking, thus 
showing that the post-fracture behaviour was essentially 
similar to that observed in barrel-shaped boudins. Con- 
sequently boudins which have suffered both pre- and 
post-fracture plastic deformation will show characteris- 
tics of both barrel and pinch-and-swell styles (e.g. Cloos 
1947, figs. 18 and 19, Ramsay 1967, fig. 3-44). 

Very hard boudins suffer no plastic extension either 
before or after fracture and so, of all the styles of 
boudinage, only those with nearly rectangular outlines 
are likely to maintain a constant length during subsequent 
deformation. All other styles will extend. There may of 
course be a reduction in boudin length if further fracture 
occurs. We have not considered fracture in our analyses 
but the existence of two or more periods of fracturing may 
be shown by the occurrence of more than one size ofinter- 
boudin gap (e.g. Fig. 7a). 

INFILLING OF INTER-BOUDIN GAPS 

In our simulations we have taken as a starting con- 
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Fig. 7. Styles of boudinage structure considered directly by the PFEM simulations. (a) Rectangular boudins; tremolite layer in 
marble, Streamstown Marble Quarry, Connemara, Western Ireland. (b) Barrel-shaped boudins; calc-silicate layer in marble 
(drawn from Ramsay 1967, fig. 3-43). (c) Extreme barrel-shaped boudins; amphibolite sill in quartzite (drawn from Jones 1959, 

plate XIIA). 
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figuration two boudins that have already slightly sepa- 
rated. We have therefore assumed the development of a 
perpendicular fracture through the layer followed by 
separation, the inter-boudin gap being filled by matrix. In 
this section we discuss some problems associated with the 
development and infilling of inter-boudin gaps, our 
comments being based mainly on observations of natural 
boudinage. 

Inter-boudin gaps filled by minerals crystaUised f rom 
solution 

We assume that the layer normal fractures defining 
many natural boudins are tension fractures and that 
effective tensile stresses at depth in the Earth's crust are 
only possible when the fluid pressure exceeds the confin- 
ing pressure plus the local tensile strength of the rock at 
the site of a suitable flaw. There seems little doubt that 
many inter-boudin gaps are filled by minerals (commonly 
quartz or calcite) crystallised from the aqueous fluid 
contained in the resulting crack. In view of the low 
solubility of, say, quartz in water ( < 1~/o at 550°C, 4kb and 
~0.1~o at 300°C, 1 kb, Weil & Fyfe 1964) hundreds or 
thousands of crack volumes of water would need to be 
transported through the crack in order for it to be filled. 
Such a process suggests the existence of an external water 
reservoir. A more likely alternative is that the crack-filling 
material is derived by local stress-induced chemical 
solution and transfer which continually replenishes the 
crack-filling fluid with ions of the crystalline phase. 

The simple model of through-layer fractures followed 
by gradual boudin separation is expected to result in 
microstructural features in the inter-boudin gap similar to 
the vein textures described by Durney & Ramsay (1973). 
Detailed work may well show many such veins to be the 
product of repeated crack-seal increments (Ramsay 1980) 
but many complicating factors can be envisaged. For 
instance, the boudin-defining fractures may themselves 
require many small increments of crack extension before 
eventually forming a through-layer fracture. Indeed, this 
is to be expected in hydraulic fracturing because, as a 
sharp flaw develops into a crack, the almost instantaneous 
increase in volume would lead to sudden loss of fluid 
pressure. This, combined perhaps with plastic-blunting of 
the crack-tip, would arrest crack propagation. The vein 
texture which finally develops depends on whether the 
short crack seals at this stage or whether fluid pressure 
rises rapidly again to initiate another propagation event. 
Once a complete fracture with vein-type infill has de- 
veloped its subsequent opening history might depend on 
the stress distribution within the inter-boudin gaps. Each 
crack-seal event is expected to be concentrated near 
boudin ends. Early crack-seal increments can therefore 
eventually become remote from boudin ends and may 
then suffer subsequent deformation and/or recrystalli- 
sation and grain-growth. This may explain inter-boudin 
gaps showing fibre textures close to boudin ends while 
further away the grains become more equant. 

It should also be remembered that, even in low-grade 
environments, complex minerals may develop in 'pressure 

fringes', including tremolite (Wickham 1973) and seri- 
cite/white mica (Williams 1972, Mukhopadhyay 1973). At 
higher grades it may even be possible for pressure fringe 
mineralogies to be essentially similar to those found in the 
normal matrix (Ferguson & Harte 1975). 

Inter-boudin gaps filled by matrix 

Inter-boudin gaps filled by inflow from the surrounding 
matrix appear to be very common. This type of in fill is, of 
course, expected when boudin separation is preceded by 
substantial ductile necking, but when found in con- 
junction with angular boudins it poses some mechanical 
difficulties. Such infills seem to require, in the early stages 
of boudin separation, a process analogous to sheet 
extrusion in order to force matrix into a narrow gap. The 
high strain-rates necessary would be expected to produce 
substantial modifications of the matrix microstructure 
and yet the grain-size and character of foliation found in 
such inter-boudin gaps is commonly indistinguishable 
from that in normal matrix remote from the boudinaged 
layer. 

A possible solution to this problem is suggested by the 
common but puzzling occurrence of angular boudins with 
wedge-shaped ends or adjacent boudins with otherwise 
non-matching ends (Fig. 8). These observations suggest 
that, in spite of their angular appearance, the boudins are 
not defined by tensile brittle fracture surfaces. Before 
considering alternative fracture mechanisms we review in 
the following paragraphs some relevant work on fracture 
mechanics. 

Fracture starts from a pre-existing crack or sharp flaw 
and it is the conditions in a small volume of material at the 
crack-tip that determine the subsequent fracture be- 
haviour. The material discontinuity means that no stress 
can be transmitted across the faces of the crack so that the 
load which would have been carried by the cracked region 
is transferred to the surrounding material and is con- 
centrated into a small region near the tip of the crack. For 
example, if a penny-shaped internal crack of length 2a 
along the x direction lies at right angles to a remote 
uniaxial tensile stress field, the local stress across the crack 
plane ahead of the crack is given by, 

tr = K (2nx) 1/2 

where K is called the stress intensity factor and, for a 
fracture stress as, has a critical value of, 

K c = a f  (ha) 1/2. 

Fig. 8. Example of boudins with non-matching ends, dolomite layer in 
marble (drawn from Weiss 1972, plate 142A). 
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K~ is a material property known as fracture toughness 
which characterises resistance to crack growth. 

The situation is more complicated for elastic-plastic 
materials and much effort has been directed towards 
finding an analogous one-parameter toughness measure 
that reflects the elastic- plastic stress and strain fields near 
the crack-tip. One approach is based on the observation 
that, when an elastic-plastic body with a sharp crack is 
subjected to crack-normal uniaxial tension, the crack 
faces move apart and the crack-tip becomes blunted 
(without extension of the crack) until some mechanism of 
crack extension either gradually of abruptly takes over. 
The critical crack opening displacement, 6¢, is sometimes 
used as a measure of toughness in yielding fracture 
mechanics and, for limited plasticity, can be related to K~ 
through the relation, 

6c = K~ (ayE)  1 2 

where cry is the uniaxial yield stress and E is Young's 
modulus. The physical significance of 3~ is somewhat 
problematic because cracks are propagated by release of 
elastic energy, not by the accumulation of plastic work. 

Another one-parameter characterisation is the J- 
contour integral (see McMeeking 1977), or energy- 
momentum tensor, which defines for a non-linear elastic 
deformation the total potential energy release rate (as a 
crack is extended) for any chosen contour around the 
crack-tip region. Again J can be related to crack-opening 
displacement (Turner 1978) but use of a critical J value, J~, 
to characterise elastic-plastic fracture again seems 
difficult to justify because the energy release from a plastic 
region is quite unlike that from a non-linear elastic region 
at the same strain level (Knott 1978). 

The foregoing remarks are intended to draw attention 
to the difficulties and uncertainties associated with elastic- 
plastic fracture mechanics even in relatively straightfor- 
ward engineering contexts that are amenable to physical 
experimentation. We will nevertheless attempt to adapt 
some results of a recent elastic-plastic finite element 
analysis of crack-tip blunting (McMeeking 1977 ; see also 
Rice et aL 1979) to the problem of angular boudinage with 
matrix infill. 

The McMeeking study is an incremental finite element 
analysis which, like ours, uses plane strain isoparametric 
quadrilateral elements. It is concerned with plastic blunt- 
ing of a notch rather than a sharp crack. This approach is 
justified by the earlier work of Rice & Johnson (see 
McMeeking 1977) who found that the notch shape 
(calculated by a slip-line method) following small-scale 
yielding could equally well be obtained from the steady- 
state shape of an initially sharp crack blunted by the same 
loads. That is, as the total notch-width grows to several 
times the original width, the difference between the 
blunted notch-shape and the shape of a sharp crack 
blunted by the same loads becomes negligible. 

McMeeking's notch-blunting solution, for small-scale 
yielding employs traction-flee boundary conditions on 
the notch surface, and displacement boundary conditions 
elsewhere. The incremental analysis was continued until 
final notch-width was about five times the original width, 

the notch shape remaining unchanged beyond the point at 
which notch width was about three times the original. 
There were slight differences in notch-shape depending on 
whether the material was hardening or non-hardening, 
that for hardening materials showing a slightly splayed 
notch (Fig. 9a). 

In the context of boudinage the existence of a blunted 
notch in a layer, rather than a sharp crack, seems 
important in that it would allow a ductile matrix to infill 
the notch without posing mechanical difficulties. The 
blunted notch will still be mechanically weak especially as, 
in nature, the notch surface is unlikely to be smooth. But 
such an infilled notch is unlikely to propagate rapidly 
because its surface would not be traction-free and would 
therefore be able to transmit stress that would otherwise 
be concentrated at notch asperities. A further point is that 
stress concentration at the notch shoulders may well 
promote yield at these points and hence the notch would 
widen further. 

We visualise boudin-defining fractures developing by 
this locally plastic mechanism, the final shape of the 
separation surface depending on the detailed history of 
crack propagation and crack blunting episodes. In nature, 
the plastic zone in the crack-tip region may well be rather 
irregular (examples m metals are given by Prince & 
Martin 1979, and Hall & Hutchinson 1980). Profound 
micro-structural modifications may also occur in the 
plastic region around a crack-tip: ira a 28/Jm grain-size 
carbon-steel, for example, Davidson et al. (1976) found 
that subgrains of about 5/~n~ or less are formed within a 
zone up to 80 #m from the crack-tip. The subgrains may 
also depend on the chemical environment at the crack-tip 
(Lankford & Davidson 1976i. For our purposes the 
important point is that, following a reduction in grain size, 
deformation mechanisms could operate that show a high 
strain-rate sensitivity to the stress. As a crack slowly 
advances the zone of grain refinement left in its wake 
would allow further permanent deformation. The notch 
might spread open behind the advancing crack thus 
allowing the matrix to work its way deeper into the layer. 
Possible histories of crack development are illustrated in 
Figs. 9 (bd)  and suggest that non-matching ends to 
adjacent boudins could be duc to local plasticity even 
though the bulk of the layer is not yielding. This model, 
here offered only as a preliminary suggestion, clearly 
needs much developmenL but it does appear to offer a 
plausible explanation for many occurrences of angular 
boudins with matrix infitl. There is also the attraction that 
it allows a natural gradation through to boudinage styles 
that are obviously ductile. Some natural boudinage 
examples showing features that may be the result of 
ductile crack opening are ,~hown in Fig. 7(b) (inset, early 
stage) and Fig. 8 (left harld boudin, later stage). 

The model outlined above does not offer an expla- 
nation for boudinage structure with matrix infill when 
adjacent boudins arc defined by plane layer-normal 
surfaces (e.g. Fig. 7a). We find it difficult to account for 
such occurrences but proposc that a rapidly propagating 
through-layer fracture may bc filled with fluid at a 
presstire close to the continirig prcssure. The fluid remains 
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Fig. 9. Diagramatic representation of crack-tip blunting as a possible explanation of boudinage involving boudins with non- 
matching ends. (a) Development of a blunt notch from a sharp crack in a material with v = 0.3, tro/E = 1/300, N = 0.2 (v, 
Poisson's ratio; E, Young's modulus; ao, tensile yield strength ; N, power-law hardening coefficient), after McMeeking (1977, 
fig. 2). (b)-(d) Possible development of a notch following successive increments (numbered) of crack advances and crack- 
blunting; the first crack-blunting increment leads to a notch-shape and, after each increment, matrix is envisaged as filling the 

notch before the next crack advance. 

in the inter-boudin gap during boudin separation, thus 
providing a hydraulic resistance to the matrix, which 
does, however, eventually work its way into the gap as 
separation increases and the fluid gradually escapes. We 
envisage that such a process would be promoted by pre- 
fracture dilatancy (Brace et al. 1966, Scholz 1968, Edmond 
& Paterson 1972) such that, following fracture, the fluid 
held in temporary microcracks would be rapidly drained 
into the newly developed gap. With the pores thus closed 
(and permeability consequently reduced) the fluid may 
then be trapped for a period of time long enough for it to 
act as a hydraulic 'dashpot' providing resistance against 
the rapid intrusion of ductile matrix into the inter-boudin 
gap. The proposed mechanism is illustrated schematically 
in Fig. 10. 

CONCLUSIONS 

The term boudinage is used to describe the processes 
involved in the evolution of structures showing a variety 
of morphologies which have developed due to the exten- 
sion and failure of a layer. Consequently in considering 
boudinage it is important to differentiate between the 
ductile (plastic) and brittle (fracture) components and also 
to establish the relationship between them. Plasticity is 
best considered in terms of the gradient of the stress- 
strain curve; steep slopes define hard rocks, gentle 
slopes soft rocks. Fracture may occur at any time during 
plastic deformation depending on the particular charac- 
teristics of the rock. The various combinations of hard- 
ness, fracture toughness and timing results in the nu- 

" ' . . ' - ' .  " " :  " " . : . . i " ' . ' :  . ' . - . : ' .  - " . ;  " : . "  ' ; ' . "  " " 

a b c d 

Fig. 10. Schematic representation of progressive (a-d) matrix infiU of an 
inter-boudin gap, the initial boudin separation being a layer-normal 
plane; ornament indicates boudin (lines), matrix (dots) and fluid (no 

ornament). 

merous styles of boudinage, which cannot be adequately 
explained in terms of competence and competence con- 
trast. The finite element method simulations, although 
restricted to post-fracture plastic modification, show the 
importance of boudin hardness in determining boudin 
shape and matrix hardness in determining boudin sepa- 
ration. IThe simulations can only be compared directly 
with natural examples having rectangular or barrel 
shapes, although the post-fracture behaviour of other 
styles will be similarly determined by the 'hardness' of 
boudin and matrix. Early fracturing of hard layers results 
in rectangular boudins, but for increasingly soft layers 
barrel and extreme barrel shapes will develop. As the 
amount of plastic deformation prior to fracture increases 
necking occurs and cigar or sausage shapes result. The 
mechanism of fracture also determines the shape of 
boudins; local plasticity at the site of fracture can lead to 
the development of boudins with non-matching ends and 
can also allow the matrix to gradually fill the inter-boudin 
gaps without losing its essential character. 

Boudinage is not a simple structural process. To date 
insufficient consideration has been given to it and many 
unusual or difficult to explain occurrences have been 
largely ignored. In this paper we began by considering 
only the post fracture ductile component of boudin 
development, but both pre-fracture ductile behaviour and 
the mechanism of fracture are equally important. Our 
attempts to relate these various aspects is little more than 
a faltering start and much more work is required, 
especially in terms of fracture. There is also the question of 
chemical changes during boudinage. So far this has been 
considered only in terms of the infilling of inter-boudin 
gaps by stress induced solution and transfer. The finite 
element simulations show that stress gradients exist 
within boudins and chemical migration might also be 
expected to occur. In metals, the chemical environment 
adjacent to fractures or cracks is known to affect the 
fracture mechanics. The effect of metamorphism during 
boudinage is also largely unexplored. Misch (1969, 1970) 
has considered the inter-relationship between defor- 
mation and metamorphism but much work needs to be 
done in this field. 
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